Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Распространение электромагнитных волн в волноводах. Волны типа н в прямоугольном волноводе

Республика Казахстан

Алматинский институт Энергетики и Связи

Кафедра Радиотехники

Контрольная работа

По дисциплине: Теория передачи электромагнитных волн

Прямоугольный волновод

Выполнил: ст. гр. БРЭ-07-9

Джуматаев Е. Б.

Зачетная книжка № 073013

Принял: доцент Хорош А.Х.

Алматы 2009


Задание

1. Построить амплитудно-частотную (АЧХ) и фазо-частотную (ФЧХ) характеристики отрезка волновода длиной L в заданном диапазоне длин волн.

2. Изобразить картину силовых линий электромагнитного поля всех типов волн, которые в этом диапазоне длин волн могут участвовать в переносе активной энергии. Построить зависимости их продольных составляющих от поперечных координат. Привести картины распределения плотности поверхностного тока, соответствующего распределению поля этих типов волн на стенках волновода.

3. Во сколько раз изменится длительность импульса прямоугольной формы на выходе волновода по сравнению со входом, если частота заполнения импульса равна центральной частоте рабочего диапазона волновода.

Исходные данные из таблиц 3-5:

Амплитуда поля

, В/м: 10

Длина отрезка L, м: 15

Материал стенок: медь

Тип волновода: □ (прямоугольный)

Характерные размеры волновода, мм: 28.5x12.6

Рабочий диапазон

, м: 0.029 – 0.056

Длительность импульса, нс: 1

Учитывать, что независимо от количества мод, участвующих в переносе энергии по волноводу, мощность генератора не меняется (можно принять равенство амплитуд всех мод).

Задание 1


Рис. 1. Амплитудно-частотная характеристика


Рис. 2. Фазо-частотная характеристика

Задание 2

волновод электромагнитный поле импульс

Прямоугольный волновод представляет собой полую металлическую трубу прямоугольного сечения.

При падение плоской волны с параллельной поляризацией на идеально проводящую плоскость, структуры полей электрического и магнитного векторов Магнитный вектор с единственной проекцией H y чисто поперечен, в то время как электрический вектор имеет и поперечную проекцию E x , и продольную проекцию E y . Неоднородные плоские волны такой структуры принято называть Е-волнами .(131 стр.)

При падении плоской волны с перпендикулярной поляризацией на идеально проводящую плоскость электрическое поле имеет единственную отличную от нуля проекцию

и является чисто поперечным. Вектор напряженности магнитного поля, напротив, кроме поперечной проекции H x имеет также продольную проекцию H y . По этой причине такие направляемые волны принято называть Н-волнами . (133 стр.)

Характер зависимостей проекций векторов электромагнитного поля волн Е- и Н-типов вдоль продольной координаты z и поперечной координаты х совершенно различен: по оси z устанавливается бегущая, а по оси х - стоячая волна. Чтобы учесть эту особенность рассматриваемого волнового процесса, вводят два параметра: продольное волновое число (7.18-7.20)

и поперечное волновое число ,

(2)

такие, что

при любом угле падения

. Где, - коэффициент фазы волны.

Пограничный случай возникает на такой рабочей частоте, когда

. При этом h=0 и, как следствие, длина волны в волноводе . Принято говорить, что волновод с выбранным типом волны оказывается в критическом режиме. Длину волны генератора, соответствующую случаю , называют критической длиной волны данного типа и обозначают. (стр. 158-159)

Из приведенных рассуждений следует, что в критическом режиме коэффициент фазы

Отсюда получается формула для вычисления критической длины волны (8.29)

(4)

Где, a и b – размеры волновода, числа т и п называют индексами волны данного типа. Физически они означают количества стоячих полуволн, возникающих внутри волновода вдоль координатных осей х и у соответственно. Поскольку индексы могут быть любыми, в прямоугольном металлическом волноводе возможно раздельное существование сколь угодно большого числа волн типа Е тп. Однако, волны типа E 0n и E m0 не существует. Для волн типа Н тп , также, справедлива формула (4).

Значит, для критической длины волны должно выполнятся следующее условие, при котором поле представляет собой распространяющуюся волну

Или, подставив значения рабочего диапазона и размеры волновода, получим

(5)

Условие выполняется, только при m=1 и n=0 (

становится равным 0.057). Значит, в данном волноводе будет распространяться волна типа H 10 .

Рис. 4. Структура силовых линий векторов электромагнитного поля типа H 10 в прямоугольном волноводе


Длину волны в волноводе можно найти преобразовав формулы (3) и (4):

(6)

Это равенство показывает, что при изменении длины волны генератора

длина волны в волноводе изменяется не пропорционально ей. Закон зависимости длины волны в волноводе от длины волны в свободном пространстве называют дисперсионной характеристикой волновода. В явном виде эта характеристика описывается формулой, вытекающей из выражения (6) (8.32):

Зависимость длины волны в волноводе от длины волны генератора показано на рис. 3.

Волны типа Н характепизуются тем, что здесь магнитное поле имеет продольную составляющую , в то время как электрическое поле поперечно, т.е. .

Будем предполагать, что геометрия и физические параметры волновода остаются такими же, как при рассмотрении волн типа Е. Все составляющие электромагнитного поля могут быть выражены через составляющую с помощью формул перехода:

По аналогии с рассмотрением волны типа Е, составляющая должна удовлетворять уравнению Гельмгольца, решение которого должно искаться в виде

Здесь амплитудная функция является решением двумерного поперечного уравнения

.

Как и ранее, − поперечное волновое число.

Волновое уравнение должно быть дополнено граничными условиями, обеспечивающими обращение в нуль тангенциальных составляющих электрического поля на идеально проводящих стенках волновода. Эти условия записываются следующим образом:

Формулы перехода позволяют записать данные условия через искомую функцию :

Таким образом, исследование распространения волн типа Н в прямоугольном металлическом волноводе сводится к решению краевой задачи, описанной предыдущими формулами. Данная краевая задача отличается от задачи, которая описывала распространение волн типа Е, тем, что здесь на границе области, т. е. на контуре сечения волновода, обращается в нуль не сама искомая функция, а ее производная по направлению нормали. В математической физике такие краевые задачи носят название однородных краевых задач Неймана. В частности, задача, полностью подобная рассматриваемой, встречается в механике при рассмотрении колебаний упругой мембраны прямоугольной формы с незакрепленными краями. Равенство нулю нормальной производной ка краях означает отсутсвие в этих точках мембраны внутренних натяжений.

Рассматриваемая краевая задача решается методом разделения переменных. Аналогично рассмотрению волны типа Е, запишем общее решение уравнения Гельмгольца в виде

Граничные условия при , могут быть удовлетворены тогда, когда . Далее, обозначая произведение как , будем иметь

Из граничных условий при , ледует, что

Здесь , − целые положительные числа, не равные нулю одновременно. Как и раньше, поперечное волновое число определяется соотношением

.

Каждой паре индексов , соответствует магнитный тип волны, обозначаемый как . Критическая длина волны для этого типа колебаний находится по общей формуле для критической длины волны:

Аналогично общему рассмотрению критической длины волны, для волн Н-типов справедливы выражения

,

.

Выясним вопрос о том, какой тип волны в прямоугольном волноводе является низшим, т. е. обладает наибольшей критической длиной волны. Из анализа формулы критической длины волны следует, что наибольшей критической длиной волны будет характеризоваться тот тип колебаний, которому соответствуют наименьшие индексы. Поскольку для волн Н-типов


,

в данном случае один из индексов, но не оба вместе, может равняться нулю, так как при и все составляющие напряженностей поля равны нулю. В то же время известно, что для волн Е-типа такая ситуация невозможна. Это значит, что низший тип колебаний в прямоугольном волноводе принадлежит к классу волн Н-типа.

Наименьшими значениями и , при которых напряженность и отличаются от нуля, будут , и , , то есть волны типа и соответственно. Критические длины волн для этих типов волн в соответствии с общим выражением будут:

При обсуждении постановки задачи условились считать, что размер сечения волновода по координате больше, чем по координате , т. е. . Отсюда следует, что , то есть из двух колебаний с наименьшими из возможных индексов, наибольшей критической длиной волны будет обладать тип колебаний .

1.12.2. Волна типа

Рассмотрим этот тип колебаний в прямоугольном волноводе более подробно как из-за большей наглядности, так и из-за широкого практического использования этого типа колебаний.

Начнем с построения качественной картины поля. При этом в качестве исходной можно использовать структуру поля волны в волноводе, образованиом двумя идеально проводящими плоскостями.

Рисунок 20 − Построение картины распределения электромагнитного поля типа

Обращаясь к рисунку 20, заметим, что поскольку силовые линии электрического вектора здесь параллельны поперечной координате , во внутреннем пространстве волновода можно установить две идеально проводяшие перегородки. отстоящие друг от друга на расстояние . В силу перпендикулярности векторов поля Е к этим перегородкам граничные условия на последних будут выполняться автоматически. Таким образом, можно рассматривать лишь поля, существующие в замкнутой области с прямоугольной формой сечения, то есть перейти к прямоугольному волноводу.

Чрезвычайно важно отметить, что данная картина поля останется справедливой при любом расстоянии между перегородками или, согласно принятой здесь терминологии, при любом размере узкой стенки волновода. Отсюда следует, что величина не должна входить в выражение, определяющее критическую длину волны для данного типа колебаний. Действительно, при , будем иметь

Поскольку волна типа в рассматриваемом волноводе является низшим типом колебаний, можно сформулировать полученный результат следующим образом: по прямоугольному волноводу могут передаваться лишь колебания с длинами волн, меньшими, чем удвоенный размер широкой стенки; более длинноволновые колебания по волноводу принципиально распространяться не могут.

Передачу электромагнитной энергии от генератора к нагрузке по волноводу следует вести на основном типе колебаний , так как анализ показывает, что при этом потери энергии в волноводе минимальны. Для того, чтобы в волноводе имели место только колебания типа , необходимо выбрать рабочую длину волны менее , но более , , и других критических длин волн. Практически необходимо соблюдать условие

Запишем сводку аналитических выражений для составляющих электромагнитного поля волны :

,

где − продольное волновое число, − постоянная распространения (волновое число) в свободном пространстве..

Данные формулы получены с помощью правил перехода от продольных компонет к поперечным. Как видно, в векторах поля волны типа присутствуют всего три составляющие. Рассмотрим их распределение внутри волновода подробнее.

Воспользовавшись методом комплексных амплитуд, определим мгновенные значения каждой компоненты в зависимости от времени. Для этого нужно будет заменить на и умножить комплексные амплитуды на временной экспоненциальный множитель . Взяв затем от полученных формул действительную часть по формуле Эйлера, получим

.

Остальные компоненты поля равны нулю. Построим теперь точное распределение силовых линий для момента времени . Из выражений следует, что напряженность электрического поля имеет лишь одну составляющую , паралелльную оси . При этом величина составляющей не зависит от координаты . Поэтому электрические силовые линии представляют собой прямые, параллельные узкой стенке волновода (рисунок 21). Напряженность электрического поля в любом поперечном сечении волновода, параллельном плоскости , зависит лишь от координаты и меняется в соответствии с зависимостью . Наибольшее значение напряженность принимает при , т.е. в середине широкой стенки волновода. Следовательно, зависимость напряженности поля от координаты характеризуется полусинусоидой.

Рисунок 21 − Распределение поля в поперечном сечении волновода

В направлении оси величина при фиксированном времени изменяется по закону синуса и при в плоскости напряженность . Поэтому на рисунке 21 построено распределение в плоскости при , когда имеет максимальное значение, направленное сверху вниз. В середине силовые линии располагаются густо, указывая на максимум напряженности поля, и становятся более редкими по направлению к краям. Через половину периода времени направление силовых линий становится обратным.

Величина составляющей напряженности магнитного поля изменяется по координатам, как это следует из выражений для поля, аналогично изменению величины напряженности электрического поля.

Величина же составляющей по координате изменяется по закону косинуса , т.е. имеет максимальные противоположные по знаку значения у вертикальных (узких) стенок волновода , , и нулевое значение на середине поперечного сечения волновода .

Структуру ЭМП волны любого типа в волноводе удобнее всего представлять путем построения силовых линий. На рис.1.3 показана структура ЭМП волны в прямоугольном волноводе. Волна - это поперечно-электрическая волна. Электрическое поле имеем в поперечном сечении, а магнитное поле, как в поперечном, так и в продольном.

Вдоль стороны " " волновода электрическое поле изменяется по синусоидальному закону, имеет место одна вариация (индекс m =1) поля. Вдоль OX на отрезке 0-a электрические силовые линии везде нормальны к плоскости широкой стенки волновода. Густота линий отражает величину напряженности электрического поля.

Вдоль узкой стенки волновода распределение амплитуды электрического поля равномерное, при изменении координаты Y поле не изменяется, нет вариаций поля (n =0).

Порядок построения электромагнитного поля волны следующий:

* Нанести электрические силовые линии.

* Построить линии тока смещения, сдвинув структуру электрических силовых линий вдоль оси волновода на .

* Построить магнитные силовые линии, замкнув их по правилу буравчика вокруг токов смещения.

* По примыкающим к поверхности магнитным силовым линиям, пользуясь граничным условием, построить структуру поверхностных токов проводимости .

Помнить: электрические и магнитные силовые линии перпендикулярны друг другу.

Подключим ко входу двухпроводной длинной линии генератор синусоидальных колебаний. Вдоль линии будет распространяться бегущая волна, зависимость напряженности поля Е U которой от координаты Z представлена на рис.1.3.

Перейдем от длинной линии к волноводу, навесив на одну и вторую стороны линии четвертьволновые короткозамкнутые отрезки. В отрезках будет возбуждаться стоячая волна с максимумом напряженности в центре волновода. Зависимость Е U от координаты C представлена на рис.1.3.

Структура токов смещения (они протекают в диэлектрике (в воздухе) между двумя широкими стенками волновода) повторяет структуру электрических силовых линий, но вдоль оси z они сдвинуты на , так как ток смещения прямо пропорционален скорости изменения напряженности электрического поля. Зависимость d см от координаты Z показана на рис.1.3. Магнитные силовые линии охватывают токи смещения и располагаются в плоскости XOZ (рис.1.5). Графическим способом, используя формулу , находим направление поверхностных токов проводимости на всех стенках волновода (рис.1.5).

Рис. 1.5 Структура поля и токов на стенках прямоугольного волновода для основной волны .

Электрическое поле основной волны в любой точке поперечного сечения поляризовано линейно, а плоскость поляризации параллельна плоскости YOZ. Иногда ее называют электрической плоскостью.



Магнитное поле основной волны лежит в плоскости || XOZ. Иногда ее называют магнитной плоскостью.

В отличие от поляризации электрического поля магнитное поле в разных точках поперечного сечения поляризовано по-разному. Поясним это с помощью рис.1.6.

Рис. 1.6 К пояснению поляризационных свойств магнитного поля волны .

Точки A, B и C являются точками наблюдения, по направлению к которым движется волна (постепенно передвигаем к точкам A, B и C силовые линии вектора H). В точке В () магнитное поле будет поляризовано линейно. В точке A поляризация будет левой эллиптической. В точке С поляризация будет правой эллиптической.

Поэтому можно сформулировать такое правило. Справа от осевой линии прямоугольного волновода магнитное поле основной волны имеет правую эллиптическую поляризацию, а слева от осевой линии левую эллиптическую. Это различие в поляризации используется при создании невзаимных устройств с ферритами.

22 ноября 2007 г.

Вполне понятно, что специфика СВЧ излучения накладывает свой отпечаток и на компоненты, из которых строятся электрические схемы. Мы рассмотрим только те из них, которые в той или иной мере встречаются в микроволновых печах.

Волноводы

Для передачи энергии от генератора к нагрузке в СВЧ диапазоне используются волноводы. Волновод представляет собой полую, металлическую трубу, как правило, круглого или прямоугольного сечения (рис. 1).

Рис. 1

Электромагнитная энергия передается по волноводу примерно так же, как вода по водопроводной трубе. В принципе, водопроводная труба, если ее тщательно очистить от грязи и накипи, вполне может быть использована и для транспортировки электромагнитных волн. Продолжая аналогию, можно заметить, что в местах протечки воды может просачиваться и электромагнитная энергия, поэтому сочленение отрезков волноводов необходимо производить как можно плотнее.

На этом, пожалуй, сходство заканчивается, и начинаются различия. Глядя на рисунок, нетрудно понять, что изготовление волноводов вещь не простая и дорогостоящая. В отличие от ржавых внутренностей водопроводной трубы внутренняя поверхность волноводов часто полируется и покрывается тонким слоем серебра. Очевидно, что переход с обычной двухпроводной линии на волноводы произошел не с целью экономии средств.

Остановимся более подробно на причинах такого перехода. Как уже отмечалось, с повышением частоты возрастает доля мощности, теряемой на излучение. Кроме того, что это плохо само по себе, это приводит к засорению эфира радиопомехами и отрицательно сказывается на здоровье радио- и электронных устройств. Поэтому уже в метровом диапазоне передача сигналов осуществляется по коаксиальному кабелю, представляющему собой двухпроводную линию, у которой один проводник выполнен в виде экранирующей оплетки, предотвращающей излучение энергии.

Однако при дальнейшем повышении частоты возрастают потери, связанные с затуханием сигнала в материале, заполняющем пространство между центральной жилой и оплеткой кабеля. При достаточно высокой частоте и большой передаваемой мощности это. приводит к перегреву кабеля и выходу его из строя. Например, коаксиальный кабель РК-75 с полиэтиленовым наполнением и длиной 10 м на частоте 3 ГГц теряет 84% передаваемой мощности. Медный прямоугольный волновод при тех же условиях теряет всего около 5% мощности. Используя в качестве наполнителя материалы с малым затуханием, можно повысить уровень допустимой передаваемой мощности, а поскольку наименьшими потерями обладает воздушное заполнение, то кабель естественным образом трансформируется в коаксиальный волновод.

Конструктивно последний уже ничем не проще волноводов, изображенных на рис. 1, скорее даже наоборот, поэтому выбор типа волновода определяется уже не экономической целесообразностью, а различием в их характеристиках.

Может возникнуть вопрос, откуда вообще берутся потери в волноводе, если он изготовлен из меди с площадью поперечного сечения в десятки миллиметров? Ответ заключается в том, что токи текут не по всему сечению волновода, а лишь там, куда проникает электромагнитное поле по так называемому скин-слою. Глубина скин-слоя зависит от частоты и удельной проводимости металла, из которого изготовлен волновод.

Она вычисляется по формуле:

К примеру, на частоте 2.45 ГГц глубина проникновения поля составляет от 1.3 мкм для меди до 10 мкм для нержавеющей стали. Поэтому общая площадь поперечного сечения, по которому проходит ток, относительно невелика. Большое значение имеет качество внутренней поверхности волновода. Чем выше шероховатость стенок волновода, тем длиннее путь СВЧ токов и тем быстрее происходит затухание волны. Поэтому для снижения потерь волноводы иногда полируют и покрывают тонким слоем серебра, на глубину скин-слоя.

В СВЧ технике встречаются волноводы с различным профилем поперечного сечения: П-образные, Н-образные, круглые, овальные и т.д. В микроволновых печах используются только прямоугольные волноводы, поэтому мы ими и ограничимся.

В целом конфигурация поля в волноводе может иметь очень сложную форму. К счастью, теория дает механизм, позволяющий свести сложную структуру поля к набору относительно простых типов, из которых, при желании, можно воссоздать любую конфигурацию существующих в волноводе полей.

Прежде чем начать анализ типов, существующих в прямоугольном волноводе, сформулируем некоторые правила, которые вытекают из теории электромагнитных колебаний.

  1. Электрические и магнитные силовые линии в электромагнитных полях взаимно перпендикулярны.
  2. Магнитные силовые линии замкнуты и охватывают проводник с током или переменное электрическое поле.
  3. Электрические силовые линии или идут от одного электрического заряда к другому, или подобно магнитным линиям замкнуты и охватывают переменное магнитное поле.
  4. Изменение электромагнитного поля во времени и в пространстве, вдоль произвольного направления, в однородной среде, происходит по синусоиде или косинусоиде.
  5. При нормальном отражении волны от проводящей поверхности (т.е. когда направления падающей и отраженной волн прямо противоположны) ее фаза изменяется на 180°.
  6. Магнитные силовые линии у поверхности проводника всегда параллельны этой поверхности.
  7. Электрические силовые линии не могут идти вдоль поверхности проводника, а всегда перпендикулярны этой поверхности.

Два последних свойства определяют структуру поля у поверхности проводника, т.е. на границе между проводником и областью распространения электромагнитной волны. Поэтому их называют «граничными условиями». Электромагнитное поле всегда имеет такую структуру, при которой выполняются эти условия.

При распространении волн в волноводе вдоль поперечных координат устанавливаются так называемые стоячие волны. В данном случае название говорит само за себя. Хотя структура волны в поперечном направлении может быть точной копией структуры волны в продольном направлении, между ними, как говорят в Одессе, есть две большие разницы. В первом случае поле статично и никакого движения вдоль поперечных координат не наблюдается, меняется лишь амплитуда поля, а во втором случае картина поля все время сдвигается в сторону распространения волны со скоростью v.

Распространяемые по волноводу электромагнитные волны условно можно разделить на дваосновных типа.

Волны, имеющие составляющую электрического поля вдоль направления распространения и не имеющие магнитной, относятся к Е-типу. И наоборот, волны, имеющие магнитную составляющую вдоль направления распространения и не имеющие электрической, относятся к Н-типу.

Каждый тип волны обозначается соответствующей буквой с индексом из двух цифр, показывающим число стоячих полуволн вдоль большей и меньшей сторон поперечного сечения волновода. Таким образом, по названию волны можно определить соответствующую ей структуру поля.

Если размеры обеих поперечных координат меньше, чем длина полуволны, то через такой волновод волна распространяться не может. В этом случае говорят, что волновод является запредельным для данного типа волны.

Наибольшая длина волны, которая может распространяться по волноводу, называется критической. При фиксированных размерах волновода критическая длина волны зависит от ее типа. Ниже приведена формула для ее расчета.

Как видно из формулы, чем выше индексы тип, тем больше должны быть поперечные размеры волновода, при которых возможно распространение данного типа. Это обстоятельство облегчает селекцию типов, поскольку на рабочей длине волны всегда можно так подобрать размеры а и b, чтобы распространялись только нужные типы волны.

На практике в качестве рабочего обычно используется тип Н 10 , изображенный на рис. 2.

Рис. 2. Структура электромагнитного поля в прямоугольном волноводе для волны типа Н 10

Для большей наглядности на рисунке также приведены графики распределения электрического и магнитного полей вдоль широкой стенки. Равенство нулю второго индекса в названии волны говорит о том, что вдоль узкой стенки поле не меняется.

Обратите внимание, что отсутствует не само поле, а лишь его изменение. Таким образом, размер b не влияет ни на структуру распределения полей в волноводе, ни на его критическую частоту.

Практически из этого следует, что даже очень узкая щель, шириной более λ/2, может рассматриваться как волновод, проводящий СВЧ энергию с минимальными потерями.

Столь тщательное рассмотрение этого типа не случайно, поскольку он является основным для прямоугольного волновода. Можно даже сказать, основным в квадрате, поскольку, во-первых, это рабочий тип волны для подавляющего большинства задач, в частности именно этот тип используется в микроволновых печах, а во-вторых, он основной по определению.

Основные преимущества данного типа волны состоят в следующем:

  1. Наименьшие размеры волновода, при заданной длине волны.
  2. Простая конфигурация поля и, как следствие, простота при его возбуждении и при согласовании волновода с нагрузкой или другими устройствами.
  3. Относительная удаленность от других типов, что облегчает его селекцию.

Как известно, все познается в сравнении, поэтому не лишним будет вкратце рассмотреть и некоторые другие типы волн. Если постепенно увеличивать частоту, излучаемую через волновод, т.е. уменьшать длину волны, то в определенный момент вдоль широкой стенки волновода сможет уместиться две стоячие полуволны. Тогда создадутся условия для возникновения типа Н 20 .

При дальнейшем увеличении частоты появятся типы Н 01 , Н 11 , Е 11 и т.д. Структура попей для типов, ближайших к основному, показана на рис. 3.

Рис. 3. Структура ближайших к основному типов волн в прямоугольном волноводе

Анализируя эти типы, не трудно выявить определенные закономерности в структуре полей и, при желании, построить типы с более высокими индексами.

На рис. 4 представлена диаграмма распределения критических длин волн, наиболее близких к основному типу.

Рис. 4. Критические длины волн прямоугольного волновода (стрелки указывают области, в которых указанные типы волн могут распространяться по волноводу)

У стандартных волноводов, как правило, выполняется соотношение b/а<0.5, поэтому ближайшим к основному является тип Н 20 . При этом расстояние между критическими длинами волн основного типа и всеми последующими увеличивается.

Заштрихованный участок показывает область длин волн, рекомендованных к использованию, поскольку в этом случае будет распространяться единственный тип Н 10 .

Данный участок не примыкает непосредственно к области отсечки. Это не случайно. Депо в том, что распространение электромагнитных волн в замкнутых системах, какой и является волновод, отличается от их распространения в свободном пространстве. Это, в частности, проявляется в том, что скорость распространения электромагнитной энергии в волноводе меньше чем скорость света. Различие наиболее ощутимо в окрестности критической длины волны. Замедление скорости электромагнитных волн увеличивает потери энергии в стенках волновода.

На рис. 5 показана зависимость затухания в волноводе от частоты, из которой видно, что при частотах, близких к критической, потери возрастают во много раз.

Рис. 5. Зависимость потерь в стенках прямоугольного волновода от частоты (штриховой линией отмечен коаксиальный волноводе той же площадью поперечного сечения)

Попутно заметим, что рост потерь при увеличении частоты связан с уменьшением толщины скин-слоя. Пунктирной пинией для сравнения показана аналогичная зависимость для коаксиального волновода с той же площадью поперечного сечения. Как видим, сравнение не в пользу последнего, если не считать узкой полоски вблизи критической частоты. Именно поэтому этот участок и не используется на практике.

Длина волны в волноводе λв больше длины той же самой волны в свободном пространстве. Эта разница тем ощутимее, чем ближе λв расположена к λкр. Ниже приведена формула для расчета λв, которая может быть полезна при расчете и анализе различных вопноводных устройств.

При воздушном заполнении волновода - еμ =1 и формула слегка упрощается.

Возбуждение волноводов

Возбуждение волн в волноводе можно осуществить с помощью устройства, создающего в некотором сечении волновода переменное электрическое или магнитное попе, совпадающее по конфигурации силовых пиний с полем волны требуемого вида. Возбуждение волн происходит также при создании в стенках волновода СВЧ токов, совпадающих с токами волны желаемого типа.

Сразу оговоримся, что любое устройство, служащее для возбуждения волн, с таким же успехом может использоваться для их приема.

При передаче энергии от генератора к нагрузке, большое значение имеет согласование передающего тракта. Под согласованием понимается способность передающей пинии обеспечить полное прохождение к нагрузке электрической мощности вырабатываемой генератором. Это одна из наиболее сложных задач при проектировании микроволновых систем, особенно большой мощности. Любые неоднородности в тракте, к числу которых относятся и элементы возбуждения, и сама нагрузка, способны привести к отражению мощности обратно к генератору. Помимо того, что это снижает выходную мощность и КПД системы, отраженная энергия неблагоприятно воздействует на генератор и при большом рассогласовании может вывести его из строя.

Обычно, энергия от генератора поступает по коаксиальной пинии. Подключение ее к волноводу осуществляется либо в виде магнитной петли связи, либо в виде электрического штыря (рис. 6).

Рис. 6. Емкостной (а) и индуктивный (б) способы возбуждения волновода

Магнитная петля связи, как правило, располагается в месте, где магнитное поле наиболее сильно, причем ее плоскость перпендикулярна магнитным силовым линиям. Подобный вид связи, в частности, используется внутри магнетрона для отбора энергии от его колебательной системы.

Электрический штырь размещается в максимуме электрического поля, вдоль его силовых линий. Во многих случаях штырем служит продолжение внутреннего провода коаксиальной линии или вывод энергии генераторного прибора. Такой тип возбуждения используется в большинстве микроволновых печей. Обычно в них мощность от магнетрона попадает в рабочую камеру через небольшой отрезок прямоугольного волновода. Оказывается, проще согласовать магнетрон с волноводом, а затем волновод с рабочей камерой, чем непосредственно магнетрон с камерой.

Возбуждение волновода не такой простой вопрос, как может показаться на первый взгляд.

Наибольшие сложности возникают при согласовании, в микроволновых печах в особенности, поскольку нагрузка в этом случае может меняться в широких пределах. Практически невозможно согласовать магнетрон с рабочей камерой таким образом, чтобы и при максимальной загрузке печи и при практически пустой камере отражаемая мощность находилась в допустимых пределах (не более 25- 30%). Поэтому во всех руководствах к микроволновым печам оговаривается минимальная загрузка камеры (около 200 г).

Аналогичные сложности возникают при попытке замены магнетрона одного типа на другой, даже если основные электрические параметры у них практически одинаковы. Если имеются отличия в геометрических размерах вывода энергии, могут возникнуть проблемы, непредвиденные для непосвященных.

Для посвященных проблемы останутся, но статус их изменится. Они станут ожидаемыми и во многих случаях устранимыми. Рассмотрим более детально возбуждение электромагнитных волн в волноводе.

Типичная конструкция подключения магнетронного генератора к волноводу показана на рис. 7 а.

Рис. 7. Подключение магнетрона к волноводу (а) и распределение напряженности электрического поля в волноводе(б)

Вывод энергии магнетрона по своей сути - это антенна в виде электрического штыря, являющегося продолжением внутренней жилы коаксиального волновода. Прямоугольный волновод с одной стороны закорочен металлической стенкой, расположенной на расстоянии примерно в четверть длины волны. Размеры штыря и расстояние до короткозамыкающей стенки являются ключевыми при согласовании генератора с магнетроном.

Известно, что оптимальная длина антенны в свободном пространстве равна λ/ 4. В нашем случае это чуть более 3 см. Длина антенны в волноводе должна быть несколько ниже этого значения, поскольку электрическая емкость, образованная верхней крышкой волновода и торцом антенны, увеличивает эффективную длину последней.

Другими словами, увеличение торцевой емкости антенны эквивалентно некоторому увеличению ее длины.

Последний вариант менее предпочтителен, поскольку, во-первых, создает у острия антенны высокую напряженность поля, что может привести к электрическим пробоям, во-вторых, увеличивает локальный разогрев антенны и, наконец, требует большей высоты волновода. Обычно вывод магнетрона оканчивается медным колпачком шириной около 1.5 см. Это увеличивает торцевую емкость, поэтому длина антенны может быть несколько ниже чем λ /4. Форма и размеры колпачков, а также длина антенны у разных магнетронов могут отличаться друг от друга. Это связано с тем, что каждый магнетрон рассчитан на работу с волноводом определенных размеров. Поэтому при замене магнетронов важно это учитывать и стараться подбирать замену не только в соответствии с электрическими параметрами, но и с одинаковыми выводами энергии.

Теперь рассмотрим, какое значение имеет расстояние L между торцевой стенкой волновода и выводом энергии магнетрона. Как было сказано ранее, это расстояние примерно равно λ /4. Вначале, для простоты, допустим, что вывод энергии не нарушает структуру поля в волноводе. В соответствии с граничными условиями электрическое попе распределится в волноводе по синусоиде.

Штырь магнетрона будет излучать электромагнитные волны во всех направлениях. Назовем волну, движущуюся в нужном направлении, т.е. к нагрузке, - прямой волной, а волну, движущуюся в противоположном от желаемого направлении - обратной. Обратная волна после зеркального отражения от металлической стенки изменит свою фазу на 180°. Поскольку на ее движения к стенке и обратно уйдет половина периода, или еще 180°, то в тот момент, когда отраженная волна достигнет штыря, ее фаза, сделав полный оборот на 360° будет такой же, как и у прямой волны. Поэтому они сложатся и с удвоенной мощностью дружно устремятся в камеру микроволновой печи.

Теперь предположим, что расстояние L будет не λ/ 4, а λ/ 2. В этом случае отраженная от стенки волна, возвратясь к штырю, окажется в противофазе с прямой. Эти волны взаимно уничтожатся, распространения энергии вдоль нужного направления не произойдет, и пирожки в камере останутся холодными. Но, как вывел еще Михаило Ломоносов, ничто не исчезает бесследно.

Не сумев пробиться в камеру, микроволновая энергия отправится обратно в магнетрон и будет там вершить свои черные дела.

Мы рассмотрели два крайних случая - наилучший и наихудший. Любое другое расположение штыря даст промежуточный результат, т.е. часть энергии уйдет на нагрев пирожков, а часть - на нагрев магнетрона.

В наших рассуждениях мы предполагали, что штырь не изменяет структуру поля. Однако как вы, безусловно, догадываетесь, это далеко не так. Вносимая штырем емкость нарушает синусоидальную форму распределения электрического поля вблизи него. Попе будет концентрироваться в основном внутри этой емкости, и идеальная синусоида трансформируется в реальную картинку на рис. 7 б.

Теперь перейдем к практическим выводам, которые вытекают из предыдущего материала.

Если при замене магнетрона происходит изменение емкости, из-за большей или, наоборот, меньшей длины вывода энергии, то неизбежно произойдет рассогласование, следствием которого может оказаться перегрев магнетрона и слабый нагрев в камере микроволновой печи. В принципе, в некоторых случаях это можно устранить. Например, изменив емкость или сместив магнетрон относительно торцевой стенки. Но лучше этого не делать, поскольку результат подобных действий без специального оборудования трудно отследить, а заранее вычислить необходимые корректировки практически невозможно. Самый простой и надежный способ - это подобрать новый магнетрон с такой же высотой вывода энергии, как и у старого.

Запредельные волноводы, диафрагмы

Если поперечные размеры волновода меньше критической длины волны, то такой волновод называется запредельным. Распространения энергии через него не происходит. Необходимо помнить, что термин «запредельный» всегда относителен. Всякий волновод является запредельным для одних частот и обычным для других. Поэтому, когда говорят «запредельный», всегда подразумевается рабочая частота, для которой волновод таковым является. С помощью подобного волновода можно обеспечить доступ к области, в которой сосредоточено электромагнитное поле, и в то же время избежать утечки энергии.

Несмотря на то что распространение энергии в запредельном волноводе отсутствует, переменные электрическое и магнитное поля существуют. Силовые линии поля как бы втягиваются в полость волновода. Амплитуда этих попей убывает по экспоненте по мере удаления от входа. Количественно степень убывания поля снижается примерно в 1000 раз при удалении от входа на расстояние, равное λ кр.

В свою очередь, критическая длина волны примерно вдвое превышает диаметр круглого волновода. Поэтому если, например, мы имеем отверстие диаметром 1 мм в металлической стенке толщиной 2 мм, то напряженности полей на противоположных концах этого отверстия будут отличаться, примерно, в 1000 раз. Но это еще не значит, что одна тысячная доля СВЧ мощности будет излучаться в окружающее пространство. Для того чтобы это произошло, необходимо непосредственно у отверстия иметь какой-нибудь приемник микроволнового излучения, например коаксиальный кабель с петлей связи на конце. При его отсутствии лишь очень малая часть энергии, сосредоточенной у выходного отверстия, будет излучаться наружу.

Практически, для тех соотношений размеров, которые приведены в нашем примере, можно считать, что излучение отсутствует полностью.

Камера микроволновой печи содержит большое количество различных отверстий, предназначенных для освещения, конвекции воздуха, визуального наблюдения и т.д. Поэтому важно знать, при каких условиях обеспечивается достаточная экранировка камеры. Насколько правомерно считать отверстие в камере запредельным волноводом, если его продольные размеры значительно меньше λ кр?

Предположим, что толщина стенки близка к нулю. Такое отверстие уже просто неприлично называть волноводом, поэтому будем называть его диафрагмой, как принято в технической литературе по СВЧ. Соответственно условие λ >λ кр уже не может быть достаточным для надежной экранировки.

Расчет поля проникающего сквозь диафрагму довольно сложен, поэтому мы рассмотрим лишь некоторые факты, которые позволят как-то ориентироваться в уровне излучения сквозь отверстия в камере микроволновой печи. Практика показывает, что излучение превышающее допустимый уровень, возникает, когда диаметр круглого отверстия составляет примерно 15 - 20 мм.

Поле, возбуждаемое круглой диафрагмой, пропорционально кубу ее радиуса. Поскольку излучение из нескольких отверстий примерно пропорционально их числу, то замена одного большого отверстия несколькими малыми, с той же площадью поперечного сечения, приводит к ослаблению поля в √ n раз. Этот факт используется при проектировании окон в микроволновых печах, которые изготавливаются в виде мелкоперфорированной сетки.

Попутно заметим, что уменьшение диаметра ячеек сетки положительно сказывается и на дизайне микроволновой печи. Если диафрагма представляет собой не круглое, а щелевое отверстие, то большое значение имеет его пространственная ориентация. Узкая щель не излучает, если она располагается вдоль линий тока, как это показано на рис. 8.

Рис. 8. Влияние ориентации щелей в волноводе на их излучающую способность (распределение токов на внутренней поверхности волновода показано для волны типа Н 10)

Иначе говоря, излучение сквозь щель возникает только тогда, когда она прерывает линии тока на поверхности проводника. Сказанное относится к узкой щели, ширина которой значительно меньше длины волны возбуждающих колебаний.

Значительное повышение излучения сквозь диафрагму может произойти, если непосредственно вблизи отверстий расположены какие-либо провода или иной проводящий мусор. Особенно если сквозь отверстие проходит отрезок проводника. Это может быть забытый при ремонте или сборке винт, шуруп, кусок провода и т.д. В этом случае диафрагма может превратиться в отрезок коаксиального волновода, для которого не существует ограничений на диаметр, и излучаемая мощность может увеличиться в сотни раз.

Отсюда вывод: чистота - залог здоровья.

В соответствии с общепринятой классификацией типов колебаний волной типа H называется поперечно-электрическая волна, т.е. для таких колебаний продольная составляющая напряженности электрического поля E z = 0. Цифра 1 в записи H 10 означает, что все составляющие электромагнитного поля имеют одну вариацию поля вдоль оси 0х . Цифра 0 означает, что все компоненты поля имеют постоянное распределение вдоль оси0y (0 вариаций).

Волна Н 10 называется основным типом колебаний для прямоугольного волновода. Это означает, что с помощью этого типа колебаний передаются сигналы с наибольшей длиной волны для фиксированных размеров поперечного сечения волновода а и b (a>b ). Наибольшая длина волны, которая может передаваться по волноводу, называется критической длиной волны λ кр. Для волны Н 10:

Приведем выражения, описывающие пространственную зависимость комплексных амплитуд декартовых проекций векторов электромагнитного поля для волны типа Н 10:

,

, (5.13)

.

Структура силовых линий векторов электромагнитного поля волны Н 10 приведена на рисунке 5.5 в 3-х проекциях.

Рисунок 5.5 – Прямоугольный волновод с волной H 10

На рисунке 5.6 приведены эпюры распределения компонентов поля в поперечном сечении волновода для волны Н 10 .

Рисунок 5.6 – Распределение компонентов поля по осям волновода

В выражения для полей (5.13) входит продольное волновое число h (коэффициент фазы):

. (5.14)

Входящая в (5.14) λ в называется длиной волны в волноводе:

. (5.15)

Следует отметить, что при изменении длины волны генератора λ 0 длина волны в волноводе λ в изменяется непропорционально ей. Закон зависимости длины волны в волноводе от длины волны в свободном пространстве называется дисперсионной характеристикой волновода.

На рисунке 5.7 дисперсионная характеристика волновода изображена графически. Область λ 0 < λ кр является областью прозрачности .

При λ 0 << λ кр, λ в » λ 0 . Если λ 0 ® λ кр, то λ в ® ∞. При переходе λ 0 за граничные значения λ 0 в волноводе существует не бегущая волна, а колебание, экспоненциально затухающее вдоль продольной оси 0z .

Рисунок 5.7 – Дисперсионная характеристика прямоугольного волновода

При уменьшенииλ 0 в волноводе могут распространяться высшие типы колебаний (высшие «моды»). Ближайшими к основному типу колебания Н 10 являются высшие типы колебаний Н 20 () и Н 01 ().

Если b < 0,5 а , то область, где распространяется только основной тип волны Н 10 , определяется соотношением . На практике рекомендуются следующие использования допустимой полосы длин волн:

, . (5.16)

В качестве средней длины волны рабочего диапазона рекомендуется величина:

. (5.17)

Токи на стенках волновода. Распространение электромагнитной волны внутри волновода сопровождается наведением поверхностных электрических токов на его стенках. Плотность поверхностного электрического тока на идеально проводящих стенках волновода находится, исходя из граничных условий:

, (5.18)

где – внешняя нормаль к стенке волновода,

– напряженность магнитного поля у стенки.

Поскольку картина распределения силовых линий вектора напряженности магнитного поля в волне рассматриваемого типа известна, построение линий тока на стенка волновода не представляет затруднений: эти линии образуют семейство кривых, ортогональных семейству силовых линий напряженности магнитного поля (см. рисунок 5.5).

Силовые линии напряженности электрического и магнитного полей, также как и линии поверхностных электрических токов на стенке перемещаются вдоль оси волновода с фазовой скоростью:

, (5.19)

где с – скорость света.

Со скоростью V ф распространяется фронт волны внутри волновода. Передача же сигнала по волноводу происходит с так называемой групповой скоростью:

(5.20)

Видно, что групповая скорость всегда меньше фазовой и скорости света.

Мощность, переносимая по прямоугольному волноводу волной H 10 . Как видно из формул (5.13), поперечные составляющие векторов поля E y и H х находятся в фазе, откуда следует, что вектор Пойнтинга является величиной действительной и направленной вдоль оси 0z:

Усредненная за период колебания мощность, переносимая вдоль оси волновода, определяется как интеграл от вектора Пойнтинга по поперечному сечению волновода:

(5.21)

Выражение (5.21) дает возможность определить предельно допустимую мощность, передаваемую по прямоугольному волноводу. Наибольшая амплитуда E макс не должна превосходить определенного уровня, выше которого наступает электрический пробой среды, заполняющей волновод. Для сухого атмосферного воздуха при нормальном давлении E макс.проб = 30кВ/см. Отмеченная величина является приближенной оценкой.

Выделим в формуле (5.21) сомножитель:

, (5.22)

характеризующий удельную мощность, переносимую через единичную площадку. Если положить, что на центральной частоте рабочего диапазона волновода λ 0 /2а = 0.7, и подставить в выражение (5.22) предельно допустимую напряженность электрического поля, то для волны H 10 получим:

P уд. доп = 420кВт/см 2 . (5.23)

При проектировании волноводных трактов с высоким уровнем мощности вследствие возможных отражений вводят почти трехкратный запас, снижая указанный уровень до 150кВт/см 2 .

Характеристическое сопротивление волновода. По физическому смыслу характеристическое сопротивление линии передачи – это отношение некоторой электрической характеристики волнового процесса к магнитной. В теории волноводов характеристическое сопротивление определяется как отношение модулей поперечных составляющих векторов напряженности электрического и магнитного полей:

(5.24)

Для волны H 10 , подставляя значения E y и H x из (5.13), получим:

, (5.25)

где Z 0 = 120π = 377Ом.

Волновое сопротивление Z в волноводов не может быть определено однозначно, как это было сделано в случае с линией с волной типа Т . В соответствии с законом Ома волновое сопротивление может быть определено тремя способами: через мощность и эквивалентное напряжение, через мощность и эквивалентный ток и через напряжение и ток.

В прямоугольном волноводе с волной H 10 соответствующие волновые сопротивления записываются следующим образом:

где задается формулой (5.24).

Затухание волны H 10 в волноводе обусловлено потерями энергии в металлических стенках волновода. Погонное затухание волновода с воздушным заполнением:

(5.26)

где – проводимость материалов стенок.

Анализ формулы (5.26) показывает, что потери возрастают, во-первых, при за счет увеличения скорости колебаний между боковыми стенками волновода, во-вторых, при укорочении за счет уменьшения скин-слоя и увеличения поверхностного сопротивления стенок волновода. Минимум затухания поля при соотношении сторон поперченного сечения 2:1 наблюдается при .

Круглые волноводы

Применяются во вращающихся соединениях, в устройствах для получения волн с вращающейся поляризацией и в некоторых других случаях. Вследствие того, что в круглых волноводах возможно изменение направления поляризации в местах неоднородностей, они редко применяются в качестве основных линий передачи.

В круглых волноводах чаще других используются волны типов H 11 , E 01 и H 01 . Структура поля этих волн в поперечном сечении линии показана на рисунке 5.8 .

Рисунок 5.8 – Типы волн в круглых волноводах

Волна типа H 11 является основным типом колебаний в круглом волноводе. Критическая длина волны . По своим свойствам волна H 11 похожа на волну H 10 в прямоугольном волноводе.

Волна типа E 01 является наинизсшей из осесимметричных волн и находит применение во вращающихся сочленениях. Критическая длина волны .

Для обеспечения возможности распространения волн типа E 01 и исключения волн высших типов необходимо выполнять условие , где – критическая длина волны ближайшего высшего типа H 21 . При выполнении этого условия кроме волны E 01 в волноводе может распространяться волна основного типа H 11 .

Определенные перспективы имеет передача электромагнитной энергии по круглому волноводу с помощью волны H 01 . Это обусловлено тем, что с повышением частоты затухание волны этого типа уменьшается. Критическая длина волны . Волна типа H 01 распространяется, а высшие типы волн исключаются, если выполняется условие . При этом в волноводе могут распространяться низшие типы волн H 11 , E 01 , H 21 , а так же волна типа E 11 . Таким образом, при использовании волны типа H 01 необходимо принимать специальные меры к чистоте возбуждения волны H 01 .

Полосковые линии

Полосковые линии получили в последние годы широкое применение в технике СВЧ. В этих линиях передачи токоведущие элементы выполнены в виде тонких металлических полосок или пленок, разделенных слоями диэлектрика – подложкой (относительная диэлектрическая проницаемость материала подложки ). Относительно высокая диэлектрическая проницаемость подложек позволяет заметно уменьшить поперечные размеры полосковых линий. Конструкции устройств СВЧ из полосковых линий выполняются с использованием современных тонкопленочных технологий и хорошо сопрягаются с печатными схемами низкочастотных узлов, устройств электроники и связи.

Вид поперечного сечения открытой полосковой линии и приблизительная структура поля показаны на рисунке 5.9, где b – ширина полоски, h – толщина подложки, – относительная диэлектрическая проницаемость материала подложки.

Рисунок 5.9 – Открытая полосковая линия. Волна квази-T

Строгий анализ электромагнитного поля полосковых линий показывает, что основной тип колебаний линии передачи является гибридным (). Однако при можно пренебречь продольными составляющими поля. Такая волна называется квази-Т волной .

Электромагнитные поля полосковой линии существуют и в подложке и над подложкой в свободном пространстве. Для определения скорости распространения волны в полосковой линии вводится понятие эффективной диэлектрической проницаемости:

(5.27)

Приближенное выражение для определения волнового сопротивления волны квази-Т в полосковой линии передачи:

(5.28)

Потери в полосковой линии складываются из потерь в металле, диэлектрике и потерь на излучение. Для защиты линий от внешних электромагнитных воздействий в конструкцию линий вводятся экраны или линия помещается в металлические кожухи. В таком коробе удобно поместить две или несколько параллельных линий, которые называются связанными. Такие конструкции используются для построения ответвителей мощности, частотных фильтров, делителей мощности и др.

Световоды

В световом диапазоне волн в качестве волноведущих устройств используются так называемые световоды, которые являются основой волоконно-оптических линий связи (ВОЛС). Световоды являются конструктивной модификацией диэлектрических волноводов. Волоконный световод состоит из диэлектрического сердечника и оболочки с диаметрами и и коэффициентами преломления и . При передачи волн по световодам используется явление полного внутреннего отражения на границе раздела диэлектриков с разными коэффициентами преломления (сердечник и оболочка). В качестве диэлектриков, из которых выполняются составные части линий, используются различные типы стекла, легированные германием, фосфором или бором. По световоду распространяются гибридные типы волн. Возможны несколько режимов работы линий.

Одномодовые режимы существуют в линии с = 3-5 мкм, = 50 мкм при мкм. На рисунке 5.10 показаны сечения световода и пути распространения волн.

Рисунок 5.10 – Простейший световод. Распространение волны внутри линии

Основным недостатком одномодовых световодов являются их малые поперечные размеры и заметная дисперсия электрических характеристик линии передачи. Одномодовые световоды используются для передачи большого объема информации на большие расстояния (несколько сотен километров).

Для передачи информации на расстояния в несколько десятков километров берутся многомодовые световоды с = 50 мкм и =120 мкм. Из-за значительных размеров (по сравнению с длиной волны) в световоде могут распространяться множество типов колебаний. Каждый из модов (типов колебаний) распространяется под определенным углом к границе раздела сердечник-оболочка.

Для сохранения достаточно больших диаметров сердечника и для уменьшения явления дисперсии используются так называемые градиентные волноводы с = 50 мкм, = 80 мкм. В таком световоде применяется сердечник, коэффициент преломления которого неоднородный и уменьшается по определенному закону от оси волновода к границе сердечник-оболочка. Наиболее часто на практике используются градиентные волокна с параболическим законом изменения коэффициента преломления.

Объемные резонаторы

В диапазоне СВЧ в качестве колебательных систем используются объемные резонаторы . Простейшим типом объемного резонатора является замкнутая металлическая полость. Чаще всего резонаторы – это отрезки коаксиальных или волноводных линий передачи, закороченных с двух сторон. Основными электрическими характеристиками являются резонансная частота и добротность Q . Для коаксиального резонатора с воздушным заполнением резонансная частота определяется из условия, что вдоль резонатора укладывается целое число полуволн:

Если для получения резонатора используется отрезок прямоугольного волновода с волной H 10 , то резонансная длина волны определяется формулой:

где а – размер широкой стенки волновода; l – длина резонатора.

Аналогично может быть определена резонансная длина (частота) резонатора, построенного на базе круглого волновода.

Реальные резонаторы имеют определенную амплитудно-частотную характеристику, из которой определяется так называемая добротность:

(5.29)

где – полоса пропускания характеристики по уровню 0.707 по полю, или 0.5 по мощности.

Добротность, определенная формулой (5.29), называется собственной добротностью . Подключение объемного резонатора к внешним устройствам через элементы связи приводят к снижению реальной добротности, которая называется нагруженной добротностью .

В качестве элементов связи с резонатором используются штыри и петли, которые вводятся в резонатор через малые отверстия в пучности напряженностей электрического или магнитного поля.

Контрольные вопросы:

1 Дать определение линии передачи.

2 Указать разницу между регулярной и нерегулярной линиями.

3 Выбрать признак классификации типов волн в линии передачи.

4 Конструктивные особенности линий, способных поддерживать волны типа T .

5 Физический смысл числовых индексов и буквенных обозначений типов колебаний в прямоугольных и круглых волноводах.

6 Назвать причины появления тепловых потерь в коаксиальной линии.

7 Пояснить необходимость экранирования линий передач.

8 Объяснить различия в определении характеристического и волнового сопротивлений.

9 Резонатор образован отрезком прямоугольного волновода и работает в режиме колебаний H 10 . Пояснить смысл буквенных и цифровых обозначений.

10 Сформулировать правило определения поверхностных токов на стенках волноводов. Привести пример.