Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Метод гаусса для чайников: решаем слау легко. Метод гаусса

(СЛАУ), состоящая из уравнений с неизвестными:

Предполагается, что существует единственное решение системы, то есть .

В данной статье будут рассмотрены причины погрешности, возникающей во время решения системы с помощью метода Гаусса, способы выявления и ликвидации(уменьшения) этой погрешности.

Описание метода

Процесс решения системы линейных уравнений

по методу Гаусса состоит из 2х этапов:

1. Предполагаем, что . Тогда первое уравнение системы делим на коэффициент , в результате получаем уравнение . Затем из каждого из оставшихся уравнений вычитается первое, умноженное на соответствующий коэффициент . В результате система преобразуются к виду: 2. В предположении, что , делим второе уравнение на коэффициент и исключаем неизвестное из всех последующих уравнений и т.д. 3. Получаем систему уравнений с треугольной матрицей:
  • Обратный ход Непосредственное определение неизвестных
1. Из го уравнения системы определяем 2. Из го - определяем и т.д.

Анализ метода

Данный метод относится к классу прямых методов решения системы уравнений, а это значит, что за конечное число шагов можно получить точное решение, при условии, что входные данные (матрица и правая часть уравнения - ) заданы точно и вычисление ведется без округлений. Для получения решения требуется умножений и делений, то есть порядка операций.

Условия, при которых метод выдает точное решение, на практике не выполнимы - неизбежны как ошибки входных данных, так и ошибки округления. Тогда встает вопрос: насколько точное решение можно получить, используя метод Гаусса, насколько метод корректен? Определим устойчивость решения относительно входных параметров. Наряду с исходной системой рассмотрим возмущенную систему:

Пусть введена некоторая норма . - называется числом обусловленности матрицы .

Возможны 3 случая:

Число обусловленности матрицы всегда . Если оно велико () , то говорят, что матрица плохо обусловлена. В этом случае малые возмущения правых частей системы , вызванные либо неточностью задания исходных данных, либо вызванные погрешностями вычисления, существенно влияют на решение системы. Грубо говоря, если погрешность правых частей , то погрешность решения будет .

Проиллюстрируем полученные результаты на следующем числовом примере: Дана система

Она имеет решение .

Теперь рассмотрим возмущенную систему:

Решением такой системы будет вектор .

При совсем малом возмущении правой части получили несоизмеримо большое возмущение решения. Объяснить такую "ненадежность" решения можно тем, что матрица почти вырожденная: прямые, соответствующие двум уравнениям, почти совпадают, что видно на графике:

Такой результат можно было предвидеть в силу плохой обусловленностью матрицы :

Вычисление является достаточно сложным, сравнимо с решением всей системы, поэтому для оценки пограшности применяются более грубые, но простые в реализации методы.

Способы оценки ошибок

1) Контрольная сумма: обычно применяется для предупреждения случайных погрешностей в процессе вычисления без помощи компьютеров.

Составляем контрольный столбец , состоящий из контрольных элементов системы:

При преобразовании уравнений над контрольными элементами производятся те же операции, что и над свободными членами уравнеий. В результате этого контрольный элемент каждого нового уравнения должен равняться сумме коэффициентов этого уравнения. Большое расхождение между ними указывает на погрешности в вычислениях или на неустойчивость алгоритма вычислений по отношению к вычислительной погрешности.

2) Относительная погрешность известного решения позволяет без существенных дополнительных затрат получить суждение о погрешности решения.

Задается некоторый ветор с компонентами, имеющими по возможности тот же порядок и знак, что и компоненты искомого решения . Вычисляется вектор , и на ряду с исходной системой уравнения решается система .

Пусть и - реально получаемые решения этих систем. Суждение о погрешности искомого решения можно получить, основываясь на гипотезе: относительные погрешности при решении методом исключения систем с одной и той же матрицей и различными правыми частями, которыми являются соответственно величины и , отличаются не в очень большое число раз.

3) Изменение масштабов - прием, применяющийся для получения представления о реальной величине погрешности, возникающей за счет округлений при вычислениях.

Наряду с исходной системой тем же методом решается система

, где и - числа

Если бы не было погрешности округления, то выполнялось бы равенство для решений исходной и масштабированной систем: . Поэтому при и , не являющихся степенями двойки, сравнение векторов и дает представление о величине вычислительной погрешности

Улучшение метода исключения Гаусса

Рассмотренные ниже модификации метода Гаусса позволяют уменьшить погрешность результата.

Выбор главного элемента

Основное увеличение ошибки в методе происходит во время прямого хода, когда ведущая -я строка умножается на коэффициенты .Если коэффициенты 1%20" alt=" >1 ">, то ошибки, полученные на предыдущих шагах накапливаются. Чтобы этого избежать, применяется модификация метода Гаусса с выбором главного элемента. На каждом шаге к обычной схеме добавляется выбор максимального элемента по столбцу следующим образом:

Пусть по ходу исключения неизвестных получена система уравнений:

, .

Найдем такое , что и поменяем местами -е и -е уровнения.

Такое преобразование во многих случаях существенно уменьшает чувствительность решения к погрешностям округления при вычислениях.

Итеративное улучшение результата

Если есть подозрение, что полученное решение сильно искажено, то можно улучшить результат следующим образом. Величина называется невязкой. Погрешность удовлетворяет системе уравнений

.

Решая эту систему, получаем приближение к и полагаем

.

Если точность данного приближения неудовлетворительна, то повторяем эту операцию.

Процесс можно продолжать до тех пор, пока все компоненты не станут достаточно малыми. При этом нельзя останавливать вычисления только потому, что все компоненты вектора невязки стали достаточно малыми: это может быть результатом плохой обусловленности матрицы коэффициентов.

Числовой пример

Рассмотрим для примера матрицу Вандермонда размером 7х7 и 2 различные правые части:

Данные системы были решены двумя способами. Тип данных - float. B итоге получили следующие результаты:

Обычный метод
1 2
1 2 1 2
0.999991 1 0.999996 1
1.00019 1 7.4774e-005 2,33e-008
0.998404 1 0.999375 1
1.00667 1 0.00263727 1,12e-006
0.985328 1 0.994149 1
1.01588 1 0.00637817 3,27e-006
0.993538 1 0.99739 1
0,045479 2,9826e-006 0,01818 8,8362e-006
0,006497 4,2608e-007 0,0045451 2,209e-006
0,040152 4,344e-005 0,083938 2,8654e-006
С выбором ведущего элемента по строке
1 2
1 2 1 2
1 1 1 1
1 1 -3.57628e-005 1,836e-007
1.00001 1 1.00031 1
0.999942 1 -0.00133276 7,16e-006
1.00005 1 1.00302 0,99998
1.00009 1 -0.0033505 1,8e-005
0.99991 1 1.00139 0,99999
0,000298 4,3835e-007 0,009439 5,0683e-005
4,2571e-005 6,2622e-008 0,0023542 1,2671e-005
0,010622 9,8016e-007 0,29402 1,4768e-006

Пусть требуется решить линейную систему уравнений вида:

или в другой форме

В курсе линейной алгебры решения системы уравнений (5.2) представляются по правилу Крамера в виде отношений соответствующих определителей. Если использовать наиболее оптимальный способ расчета определителя, то по правилу Крамера требуется примерно -|п! арифметических операций. Однако существует более оптимальный способ решения системы уравнений (5.2) - метод исключения Гаусса, в рамках которого требуется -|п 3 арифметических действий.

Начнем исследование системы уравнений (5.2) с частного случая, когда матрица системы является верхней треугольной, т. е. все ее элементы ниже главной диагонали равны нулю. Выполняя в командном окне MATLAB oneрацию spy(triu(randn(25))) сгенерируем верхнюю треугольную матрицу и ее графический образ. На рис. 5.1 приведен соответствующий пример верхней треугольной матрицы.

Из последнего уравнения системы с верхней треугольной матрицей находим Х л, подставляя его в предпоследнее уравнение, находим Х„ _i и т. д. - находим все решение. Общая формула для определения Xj-ro имеет вид:

Метод Гаусса выражается в процедуре приведения матрицы системы уравнений к треугольному виду (например, к верхнему треугольному виду на рис. 5.1). Это можно сделать следующим образом. Вычтем из второго уравнения первое, умноженное на такое число, чтобы коэффициент при X] обратился в нуль, аналогично вычтем первое уравнение из второго, третьего и т. д. вплоть до П-го. В результате должна получиться новая система уравнений, в которой в первом столбце везде нули, кроме диагонального элемента а ц. Затем с помощью второго уравнения путем такой же процедуры обнуляем элементы второго столбца, лежащие ниже главной диагонали. Продолжая эту процедуру для третьего и всех последующих уравнений, преобразуем матрицу системы к верхнему треугольному виду.

Рис. 5.1.

Пусть проведено исключение элементов из k- 1 столбца. Остальные уравнения с не обнуленными столбцами можно записать в виде:

Умножим к-к) строку на число С тк = / оIf 1 , т > к, и вычтем из ш-й

строки. Первый ненулевой элемент этой строки обратиться в нуль, а другие элементы можно пересчитать по формулам:

Проведение алгоритма (5.4), (5.5) обнуления каждого столбца матрицы ниже главной диагонали заканчивается (п - 1)-м столбцом, при этом вся процедура называется прямым ходом исключения.

Собрав (5.4), (5.5) вместе, будем иметь

или в развернутой форме

Система уравнений (5.6) легко решается обратным ходом по формулам (5.3).

Возможное нарушение в работе алгоритма (5.4), (5.5) может быть связано с тем, что на главной диагонали оказался нулевой элемент а кк " = 0. В этом случае необходимо среди строк матрицы ниже к -й найти такую, у которой на к- м месте находится отличный от нуля элемент. Такая строка обязательно должна найтись, если она не находится, то это значит, что в к- м столбце, начиная с к-го номера все элементы нулевые, а значит, и детерминант матрицы А равен нулю. Перестановкой строк можно переместить подходящую строку в нужное положение.

Если оказывается, что элемент на главной диагонали мал, то коэффициенты С т к становятся большими числами, и при пересчете элементов матрицы согласно (5.5) может быть значительная потеря точности на ошибках округления при вычитании больших чисел. Чтобы этого не происходило, среди элементов столбца а^ к, т>к, находят главный или максимальный и перестановкой строк переводят его на главную диагональ. Этот метод называется методом Гаусса с выбором главного элемента. С выбором главного элемента ошибки округления в методе Гаусса обычно невелики.

Метод Гаусса с выбором главного элемента наиболее прост, надежен и выгоден и по этой причине наиболее востребован при решении линейных систем уравнений с плотно заполненной матрицей порядка п

Рассмотрим процедуру решения линейной системы уравнений в среде MATLAB. Покажем экспериментально, что в среднем количество операций, осуществляемое центральным процессором при решении линейной системы уравнений, пропорционально кубу порядка матрицы. Покажем, что асимптотически отношение time(n)/n 3 стремится к некоторой предстепенной константе при п -> оо, где time(n) - время работы центрального процессора при данном порядке матрицы п.

В листинге 5.1 приведен код соответствующей программы.

Листинг 5.1

“/«Программа изучения затрат времени “/«центрального процессора при решении %систем линейных уравнений %очищаем рабочее пространство clear all

“/«определяем максимальный порядок “/«обращаемых матриц

птах =1 0 0 0; к =0;

“/«организуем цикл решений систем “/«уравнений вида А X = Ь for п = 1: 10: птах k =к +1; order) к) =п;

“/оформируем случайну матрицу А %и правую часть Ь A=r andn(n); b=randn(n, 1) ;

“/«запоминаем начальный момент времени “/оработы центрального процессора 10 =с рut i me;

“/орешаем линейную систему уравнений %А X = Ь по формуле: X =А Ь А Ь;

“/онаходим последующий момент времени,

“/овычитаем из него предыдущий и “/оделим на куб порядка матрицы

t (к) =(с put i me-10) / n л3; end

“/«строим график зависимости предстепенной “/оконстанты от порядка матрицы А semilogy(order,t);

Рис. 5.2.

На рис. 5.2 приведен график зависимости предстепенной константы отношения времени работы центрального процессора к кубу порядка матрицы от порядка матрицы. Видно, что при П -> оо действительно отношение time(n)/n 3 стремится к некоторой константе, что и подтверждает кубическую зависимость числа операций в методе Гаусса от порядка матрицы.

Определитель и обратная матрица также могут быть найдены методом исключения Гаусса. В процессе исключения вычитание строк не меняет определитель, но может измениться сто знак при перестановке строк. После приведения матрицы к треугольному виду, можем найти детерминант матрицы в виде произведения ее диагональных элементов:

где выбор "+" или зависит от того, четной или нечетной была суммарная перестановка строк.

Процедуру поиска детерминанта матрицы (5.7) изучим на примере стандартной функции MATLAB - det(A), где А - произвольная матрица пхп. Изучим зависимость величины детерминанта матрицы со случайными элементами, распределенными по нормальному закону со средним 0 и стандартным отклонением 1, в зависимости от порядка матрицы.

В листинге 5.2 приведен код соответствующей программы.

Листинг 52

%Программа изучения процедуры поиска детерминанта %матрицы, элементы которой случайные величины,

“/«распределенные по нормальному закону со средним О %и стандартным отклонением 1 %очищаем рабочее пространство clear all

“/«определяем максимальный порядок %анализируемых матриц

птах =3 0 0;

%организуем цикл поиска детерминанта %матрицы А - det(A) for n=l: 5: nmax k =k +1; order) k) =n;

%формируем случайную матрицу A A=r a n d n (n) ;

%вычисляем детерминант матрицы A

%переходим в логарифмическую шкалу %при фиксации значений детерминанта d(k) =si gn(d(к)) *1 оg 10(d(к)); end

%строим график зависимости значений %детерминанта матрицы от порядка матрицы

plot (order, d);

На рис. 5.3 приведен график зависимости логарифма детерминанта случайной матрицы от порядка матрицы. Видно, что детерминант случайной матрицы экспоненциально растет с ростом порядка матрицы.


Рис. 5.3.

Для вычисления обратной матрицы обозначим ее элементы через а 1т, 1,т = 1 , и будем исходить из соотношения АА 1 = Е, тогда верна следующая запись:

Согласно (5.8) /-й столбец обратной матрицы можно рассматривать в качестве неизвестного вектора линейной системы уравнений с матрицей А со специальной правой частью. Таким образом, обращение матрицы сводится к решению линейной системы уравнений п раз с одной и той же матрицей, но с разными правыми частями. Приведение системы к треугольному виду осуществляется только 1 раз, поэтому количество арифметических операций при обращении матрицы лишь в три раза больше, чем при решении системы линейных уравнений, т. е. порядка * 2П 3 .

Рассмотрим теперь функцию inv(A) в среде MATLAB, которая возвращает обратную к А матрицу. В листинге 5.3 приведен код соответствующей программы.

Листинг 53

%Программа изучения процедуры поиска обратной матрицы, Роэлементы которой - случайные величины, распределенные %по нормальному закону со средним 0 и стандартным %отклонением 1

Роочищаем рабочее пространство

%определяем максимальный порядок %анализируемых матриц

пшах=1 0 00; к =0;

Реорганизуем цикл поиска обратной Роматрицы к А - i ПV(А) for п=1: 5: птах k =к +1; о г d е г (к) =п;

Реформируем случайну матрицу А

Ровычисляем обратную к А матрицу Ai nv=i nv(А);

Ренаходим ошибку обращения Е =еуе(п);

е г (к) =п о г ш(A* Ai nv- Е) ; end

Состроим график зависимости значений ошибок

%обращения матриц от порядка матриц

semilogy(order.er);

На рис. 5.4 приведена зависимость ошибки обращения матрицы от ее порядка. Видно, что по мере роста порядка матрицы от 1 до 800 ошибка обращения, выраженная в определенной норме, выросла на пять порядков.


Систему уравнений (1.1) представим в виде

Известно большое число схем метода исключения, приспособленных для ручного или машинного счета матриц общего или специального вида.

Метод Гаусса можно интерпретировать как метод, в котором первоначально матрица приводится к верхней треугольной форме (прямой ход), а далее - к единичной (обратный ход). Очевидно, что если матрица единичная, то x t = b r

Пусть матрица системы (1.3) - верхняя треугольная, поэтому a tj = 0 при i > j, т. е. все элементы ниже главной диагонали равны нулю. Тогда из последнего уравнения сразу определяем х п. Подставляя х п в предпоследнее уравнение, находим х а _ х и т. д. Общие формулы имеют вид


При k > I коэффициенты а ы = 0.

Приведем матрицу системы (1.3) к верхней треугольной. Вычтем из второго уравнения системы (1.3) первое, умноженное на такое число, при котором коэффициент при х х обратится в нуль. То же проделаем со всеми остальными уравнениями. В результате все коэффициенты первого столбца, лежащие ниже главной диагонали, обратятся в нуль. Затем, используя второе уравнение, обратим в нуль соответствующие коэффициенты второго столбца. Последовательно продолжая этот процесс, приведем матрицу системы к верхней треугольной форме.

Запишем общие формулы метода Гаусса. Пусть проведено исключение коэффициентов из (А - 1)-го столбца. Тогда останутся уравнения с ненулевыми элементами ниже главной диагонали:

Умножим k-ю строку на число с тк = т > k и вычтем

из m-й строки. Первый ненулевой элемент этой строки обратится в нуль, а остальные изменятся по формулам

Проведя вычисления по этим формулам при всех указанных индексах, обратим в нуль элементы k-ro столбца, лежащие ниже главной диагонали. Аналогичная процедура приводит матрицу системы к верхней треугольной форме, при этом весь процесс приведения называется ПРЯМЫМ ХОДОМ МЕТОДА ГАУССА. Вычисление неизвестных по формулам (1.4) называют ОБРАТНЫМ ХОДОМ метода.

Обратный ход можно совершить иначе, если обратить в нуль и все коэффициенты, лежащие выше главной диагонали. Например, элементы п -го столбца обращаются в нуль, если ej^| умножить на (-a^V ax t = б| 2л) , где Ь^ п) - коэффициенты правой части i-го уравнения после указанных преобразований.

На некотором шаге прямого хода может оказаться, что коэффициент aj*" * 0, но мал по сравнению с остальными элементами матрицы системы и, в частности, мал по сравнению с элементами первого столбца. Деление коэффициентов системы на малую величину может привести к значительным ошибкам округления.

Для уменьшения ошибок округления поступают следующим образом. Среди элементов первого столбца а ^ каждой промежуточной матрицы выбирают наибольший по модулю (главный) элемент и путем перестановки i-й строки со строкой, содержащей главный элемент, добиваются того, что главный элемент становится ведущим. Такая модификация метода исключения Гаусса называется методом Гаусса с выбором главного элемента. Случай появления нулевых элементов обходится при этом сам собой.

Для реализации метода требуется примерно п 3 /3 операций типа умножения и п 3 /3 операций типа сложения . Полезно помнить, что оценка числа операций определяется в основном операциями, затрачиваемыми при выполнении прямого хода метода Гаусса. Обратный ход метода Гаусса требует примерно п 2 операций. Следовательно, если требуется решить несколько систем линейных алгебраических уравнений вида Ах = b с одной и той же матрицей и различными правыми частями, то общее число операций при решении S систем будет оцениваться величиной (2/3)п 3 + Sn 2 . В этом случае целесообразно реализовать алгоритм метода Гаусса в виде двух подпрограмм: первая подпрограмма должна реализовывать прямой ход алгоритма и получать на выходе верхнюю треугольную матрицу, а вторая подпрограмма должна, используя полученную матрицу, вычислять решение системы для произвольной правой части.

Продолжаем рассматривать системы линейных уравнений. Этот урок является третьим по теме. Если вы смутно представляете, что такое система линейных уравнений вообще, чувствуете себя чайником, то рекомендую начать с азов на странице Далее полезно изучить урок .

Метод Гаусса – это просто! Почему? Известный немецкий математик Иоганн Карл Фридрих Гаусс еще при жизни получил признание величайшего математика всех времен, гения и даже прозвище «короля математики». А всё гениальное, как известно – просто! Кстати, на деньги попадают не только лохи, но еще и гении – портрет Гаусса красовался на купюре в 10 дойчмарок (до введения евро), и до сих пор Гаусс загадочно улыбается немцам с обычных почтовых марок.

Метод Гаусса прост тем, что для его освоения ДОСТАТОЧНО ЗНАНИЙ ПЯТИКЛАССНИКА.Необходимо уметь складывать и умножать! Не случайно метод последовательного исключения неизвестных преподаватели часто рассматривают на школьных математических факультативах. Парадокс, но у студентов метод Гаусса вызывает наибольшие сложности. Ничего удивительного – всё дело в методике, и я постараюсь в доступной форме рассказать об алгоритме метода.

Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:

1) Иметь единственное решение. 2) Иметь бесконечно много решений. 3) Не иметь решений (быть несовместной ).

Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решениялюбой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случае приведет нас к ответу! На данном уроке мы опять рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№2-3 отведена статья. Замечу, что сам алгоритм метода во всех трёх случаях работает одинаково.

Вернемся к простейшей системе с урока Как решить систему линейных уравнений? и решим ее методом Гаусса.

На первом этапе нужно записать расширенную матрицу системы : . По какому принципу записаны коэффициенты, думаю, всем видно. Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто отчеркивание для удобства оформления.

Справка : рекомендую запомнить термины линейной алгебры. Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей.

После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями .

Существуют следующие элементарные преобразования:

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:

2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: .

3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следуетудалить . Рисовать не буду, понятно, нулевая строка – это строка, в которой одни нули .

4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля . Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число , отличное от нуля. Рассмотрим нашу матрицу из практического примера: . Сначала я распишу преобразование очень подробно. Умножаем первую строку на –2: , и ко второй строке прибавляем первую строку умноженную на –2 : . Теперь первую строку можно разделить «обратно» на –2: . Как видите, строка, которую ПРИБАВЛЯЛИ не изменилась . Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ .

На практике так подробно, конечно, не расписывают, а пишут короче: Еще раз: ко второй строке прибавили первую строку, умноженную на –2 . Умножают строку обычно устно или на черновике, при этом мысленный ход расчётов примерно такой:

«Переписываю матрицу и переписываю первую строку: »

«Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0. Записываю результат во вторую строку: »

«Теперь второй столбец. Вверху –1 умножаю на –2: . Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку: »

«И третий столбец. Вверху –5 умножаю на –2: . Ко второй строке прибавляю первую: –7 + 10 = 3. Записываю результат во вторую строку: »

Пожалуйста, тщательно осмыслите этот пример и разберитесь в последовательном алгоритме вычислений, если вы это поняли, то метод Гаусса практически «в кармане». Но, конечно, над этим преобразованием мы еще поработаем.

Элементарные преобразования не меняют решение системы уравнений

! ВНИМАНИЕ : рассмотренные манипуляции нельзя использовать , если Вам предложено задание, где матрицы даны «сами по себе». Например, при «классических» действиях с матрицами что-то переставлять внутри матриц ни в коем случае нельзя! Вернемся к нашей системе . Она практически разобрана по косточкам.

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду :

(1) Ко второй строке прибавили первую строку, умноженную на –2. И снова: почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке.

(2) Делим вторую строку на 3.

Цель элементарных преобразований привести матрицу к ступенчатому виду: . В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид .

В результате элементарных преобразований получена эквивалентная исходной система уравнений:

Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса .

В нижнем уравнении у нас уже готовый результат: .

Рассмотрим первое уравнение системы и подставим в него уже известное значение «игрек»:

Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными.

Пример 1

Решить методом Гаусса систему уравнений:

Запишем расширенную матрицу системы:

Сейчас я сразу нарисую результат, к которому мы придём в ходе решения: И повторюсь, наша цель – с помощью элементарных преобразований привести матрицу к ступенчатому виду. С чего начать действия?

Сначала смотрим на левое верхнее число: Почти всегда здесь должна находиться единица . Вообще говоря, устроит и –1 (а иногда и другие числа), но как-то так традиционно сложилось, что туда обычно помещают единицу. Как организовать единицу? Смотрим на первый столбец – готовая единица у нас есть! Преобразование первое: меняем местами первую и третью строки:

Теперь первая строка у нас останется неизменной до конца решения . Уже легче.

Единица в левом верхнем углу организована. Теперь нужно получить нули вот на этих местах:

Нули получаем как раз с помощью «трудного» преобразования. Сначала разбираемся со второй строкой (2, –1, 3, 13). Что нужно сделать, чтобы на первой позиции получить ноль? Нужно ко второй строке прибавить первую строку, умноженную на –2 . Мысленно или на черновике умножаем первую строку на –2: (–2, –4, 2, –18). И последовательно проводим (опять же мысленно или на черновике) сложение, ко второй строке прибавляем первую строку, уже умноженную на –2 :

Результат записываем во вторую строку:

Аналогично разбираемся с третьей строкой (3, 2, –5, –1). Чтобы получить на первой позиции ноль, нужно к третьей строке прибавить первую строку, умноженную на –3 . Мысленно или на черновике умножаем первую строку на –3: (–3, –6, 3, –27). И к третьей строке прибавляем первую строку, умноженную на –3 :

Результат записываем в третью строку:

На практике эти действия обычно выполняются устно и записываются в один шаг:

Не нужно считать всё сразу и одновременно . Порядок вычислений и «вписывания» результатов последователен и обычно такой: сначала переписываем первую строку, и пыхтим себе потихонечку – ПОСЛЕДОВАТЕЛЬНО иВНИМАТЕЛЬНО :
А мысленный ход самих расчётов я уже рассмотрел выше.

В данном примере это сделать легко, вторую строку делим на –5 (поскольку там все числа делятся на 5 без остатка). Заодно делим третью строку на –2, ведь чем меньше числа, тем проще решение:

На заключительном этапе элементарных преобразований нужно получить еще один ноль здесь:

Для этого к третьей строке прибавляем вторую строку, умноженную на –2 :
Попробуйте разобрать это действие самостоятельно – мысленно умножьте вторую строку на –2 и проведите сложение.

Последнее выполненное действие – причёска результата, делим третью строку на 3.

В результате элементарных преобразований получена эквивалентная исходной система линейных уравнений: Круто.

Теперь в действие вступает обратный ход метода Гаусса. Уравнения «раскручиваются» снизу вверх.

В третьем уравнении у нас уже готовый результат:

Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом:

И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым:

Ответ :

Как уже неоднократно отмечалось, для любой системы уравнений можно и нужно сделать проверку найденного решения, благо, это несложно и быстро.

Пример 2

Это пример для самостоятельного решения, образец чистового оформления и ответ в конце урока.

Следует отметить, что ваш ход решения может не совпасть с моим ходом решения, и это – особенность метода Гаусса . Но вот ответы обязательно должны получиться одинаковыми!

Пример 3

Решить систему линейных уравнений методом Гаусса

Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Я поступил так: (1) К первой строке прибавляем вторую строку, умноженную на –1 . То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное телодвижение: умножить первую строку на –1 (сменить у неё знак).

(2) Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

(3) Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

(4) К третьей строке прибавили вторую строку, умноженную на 2.

(5) Третью строку разделили на 3.

Скверным признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде , и, соответственно, , то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

Заряжаем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает, снизу вверх. Да тут подарок получился:

Ответ : .

Пример 4

Решить систему линейных уравнений методом Гаусса

Это пример для самостоятельного решения, он несколько сложнее. Ничего страшного, если кто-нибудь запутается. Полное решение и образец оформления в конце урока. Ваше решение может отличаться от моего решения.

В последней части рассмотрим некоторые особенности алгоритма Гаусса. Первая особенность состоит в том, что иногда в уравнениях системы отсутствуют некоторые переменные, например: Как правильно записать расширенную матрицу системы? Об этом моменте я уже рассказывал на уроке Правило Крамера. Матричный метод . В расширенной матрице системы на месте отсутствующих переменных ставим нули: Кстати, это довольно легкий пример, поскольку в первом столбце уже есть один ноль, и предстоит выполнить меньше элементарных преобразований.

Вторая особенность состоит вот в чём. Во всех рассмотренных примерах на «ступеньки» мы помещали либо –1, либо +1. Могут ли там быть другие числа? В ряде случаев могут. Рассмотрим систему: .

Здесь на левой верхней «ступеньке» у нас двойка. Но замечаем тот факт, что все числа в первом столбце делятся на 2 без остатка – и другая двойка и шестерка. И двойка слева вверху нас устроит! На первом шаге нужно выполнить следующие преобразования: ко второй строке прибавить первую строку, умноженную на –1; к третьей строке прибавить первую строку, умноженную на –3. Таким образом, мы получим нужные нули в первом столбце.

Или еще такой условный пример: . Здесь тройка на второй «ступеньке» тоже нас устраивает, поскольку 12 (место, где нам нужно получить ноль) делится на 3 без остатка. Необходимо провести следующее преобразование: к третьей строке прибавить вторую строку, умноженную на –4, в результате чего и будет получен нужный нам ноль.

Метод Гаусса универсален, но есть одно своеобразие. Уверенно научиться решать системы другими методами (методом Крамера, матричным методом) можно буквально с первого раза – там очень жесткий алгоритм. Но вот чтобы уверенно себя чувствовать в методе Гаусса, следует «набить руку», и прорешать хотя бы 5-10 десять систем. Поэтому поначалу возможны путаница, ошибки в вычислениях, и в этом нет ничего необычного или трагического.

Дождливая осенняя погода за окном.... Поэтому для всех желающих более сложный пример для самостоятельного решения:

Пример 5

Решить методом Гаусса систему 4-х линейных уравнений с четырьмя неизвестными.

Такое задание на практике встречается не так уж и редко. Думаю, даже чайнику, который обстоятельно изучил эту страницу, интуитивно понятен алгоритм решения такой системы. Принципиально всё так же – просто действий больше.

Случаи, когда система не имеет решений (несовместна) или имеет бесконечно много решений, рассмотрены на уроке Несовместные системы и системы с общим решением . Там же можно закрепить рассмотренный алгоритм метода Гаусса.

Желаю успехов!

Решения и ответы:

Пример 2: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.
Выполненные элементарные преобразования: (1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –1. Внимание! Здесь может возникнуть соблазн из третьей строки вычесть первую, крайне не рекомендую вычитать – сильно повышается риск ошибки. Только складываем! (2) У второй строки сменили знак (умножили на –1). Вторую и третью строки поменяли местами. Обратите внимание , что на «ступеньках» нас устраивает не только единица, но еще и –1, что даже удобнее. (3) К третьей строке прибавили вторую строку, умноженную на 5. (4) У второй строки сменили знак (умножили на –1). Третью строку разделили на 14.

Обратный ход:

Ответ : .

Пример 4: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования: (1) К первой строке прибавили вторую. Таким образом, организована нужная единица на левой верхней «ступеньке». (2) Ко второй строке прибавили первую строку, умноженную на 7. К третьей строке прибавили первую строку, умноженную на 6.

Со второй «ступенькой» всё хуже , «кандидаты» на неё – числа 17 и 23, а нам нужна либо единичка, либо –1. Преобразования (3) и (4) будут направлены на получение нужной единицы (3) К третьей строке прибавили вторую, умноженную на –1. (4) Ко второй строке прибавили третью, умноженную на –3. Нужная вещь на второй ступеньке получена . (5) К третьей строке прибавили вторую, умноженную на 6. (6) Вторую строку умножили на –1, третью строку разделили на -83.

Обратный ход:

Ответ :

Пример 5: Решение : Запишем матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования: (1) Первую и вторую строки поменяли местами. (2) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –2. К четвертой строке прибавили первую строку, умноженную на –3. (3) К третьей строке прибавили вторую, умноженную на 4. К четвертой строке прибавили вторую, умноженную на –1. (4) У второй строки сменили знак. Четвертую строку разделили на 3 и поместили вместо третьей строки. (5) К четвертой строке прибавили третью строку, умноженную на –5.

Обратный ход:

Ответ :

В данном случае помимо соблюдения требования a kk 0 при реализации формул (6) накладываются дополнительные требования, чтобы ведущий (главный) элемент в текущем столбце в процессе преобразований исходной матрицы имел максимальное по модулю значение. Это также достигается перестановкой строк матрицы.

Пример . В качестве иллюстрации преимущества модифицированного метода Гаусса, рассмотрим систему третьего порядка:

Прямой ход метода Гаусса

Исключаем х 1 из второго и третьего уравнений. Для этого первое уравнение умножаем на 0,3 и складываем со вторым, а затем умножаем первое уравнение на (–0,5) и складываем с третьим. В результате получаем

(б )

Замена второго уравнения третьим не производится, т.к. вычисления выполняются в рамках точной арифметики.

Умножая второе уравнение на 25, и складывая с третьим, получим

(в )

Обратный ход метода Гаусса

Выполняем вычисления, начиная с последнего уравнения в полученной системе:

Подставляя полученное решение в исходную систему, убеждаемся в его истинности.

Теперь изменим коэффициенты системы таким образом, чтобы сохранить прежнее решение, но при вычислении будем использовать округления в рамках арифметики с плавающей точкой сохраняя пять разрядов. Этому будет соответствовать следующая система

(г )

Прямой ход метода для системы (г ) повторим по аналогичной технологии с исходной системой (а ).

(д )

После исключения х 2 третье уравнение примет вид (остальные – без изменения)

15005 х 3 = 15004. (е )

Выполняя обратный ход, получим

Очевидно, что полученные решения и [–0,35; –1,4; 0,99993] различны. Причиной этого является малая величина ведущего элемента во втором уравнении преобразования в (д ). Чтобы это исключить, переставим в (д ) вторую и третью строки


(ж )

Для данной системы после исключения х 2 из третьего уравнения, оно примет следующий вид

6,002 х 3 = 6,002. (з )

В данном случае, выполняя обратный ход

мы получим решение системы (г ) , которое в точности совпадает с решением исходной системы.

Решая систему (г ) мы использовали модифицированный метод Гаусса, в котором на диагонали должен был находиться максимальный в текущем столбце элемент.

Рассмотрим блок-схему модифицированного метода Гаусса (рис. 2.1).

Рис. 2.1. Блок-схема модифицированного метода Гаусса

Проведем анализ предложенной схемы на примере системы n =3 (=0,001)

(8)

;. (*)

Блок 1. Ввод исходных данных:n – порядок системы,A – матрица коэффициентов при неизвестных,b – вектор свободных членов.

Блок 2.I-й цикл прямого хода (дляk , изменяющегося от 1 до предпоследнего значения, т.е. доn –1) обеспечивает исключение из главной диагонали матрицыА элементаa kk =0 благодаря поиску максимального элементаa kk в текущем столбце, осуществляемому в блоках 36 с помощью циклаII.

Затем реализуются расчеты по формулам (6) прямого хода Гаусса в блоках циклов IVиV.

Проведем поблочный анализ в среде рассмотренных циклов IVна примере (8).

Блок 3p =k = 1

Вход в цикл II

Блок 4m =k +1 = 2 доn = 3

Блок 5a 11 = 2 <a 21 = 4 из (*)

Блок 6p = 2

Блок 4m = 2+1 = 3

Блок 5a 21 = 4 <a 31 = 6 из (*)

Блок 6p = 3

Выход из цикла IIи вход в циклIII, блоки 710 выполняют перестановку строк матрицыА поэлементно

Блок 7j = 1 (j от 1 до 3)

Блок 8 r = a 11 = 2 из (*)

Блок 9 a 11 = a 31 = 6

Блок 10 a 31 = r

Блок 7 j = 2

Блок 8 r = a 12 = 1

Блок 9 a 12 = a 32 = 5

Блок 10 a 32 = r = 1

Блок 7j = 3 и по аналогииr =a 13 ;a 13 =a 33 ;a 33 =r = −1.

Выход из цикла IIIи вход вБлок 11 и далее 1213 выполняют аналогичную перестановку значений свободных членов

r =b 1 = 1;b 1 = b 3 = 14;b 3 =r= 1.

Вход в цикл IVс измененной системой

;; (**)

для пересчета b 2 вектора

m =k +1 = 1+1 = 2 доn = 3

c = a mk / a kk = a 21 / a 11 = 4/6 из (**)

b 2 =b 2 –c b 1 = 6 – 4/614 = −20/6 из (**)

Вход во вложенный цикл Vдля пересчета второй строки

i = 1 (i от 1 до 3); a 21 = a 21 – с a 11 = 4 – 4/6  6 = 0;

i = 2; a 22 = a 22 – с a 12 = 6 – 4/6  5 = 16/6;

i = 3; a 23 = a 23 – с a 13 = 2 – 4/6  8 = −20/6.

Выход из цикла Vи вход в циклIV

m = 3;c =a 31 /a 11 = 2/6.

Вход в Блок 16

b 3 =b 3 –c b 1 = 1 – 2/614 = −22/6.

Выход из цикла IVи вход в циклVи вход вБлок 17

i = 1 (i от 1 до 3); a 31 = a 31 – с a 11 = 2 – 2/6  6 = 0;

i = 2; a 32 = a 32 – с a 12 = 1 – 2/6  5 = −4/6;

i = 3; a 33 = a 33 – с a 13 = −1 – 2/6  8 = −22/6.

Выход из цикла Vс преобразованной системой

;
; (***)

и вход по линии А в циклI

k = 2;p =k = 2;m =k +1 = 3; вход вБлок 5

| a 22 | < |a 32 | = | 16/6 | > | 4/6 | из (***).

Выход из цикла IIи вход в циклIII

j = 2 (j от 2 до 3);

r = a kj = a 22 = 16/6; a 22 = a 22 ; a 22 = r = 16/6; из (***)

r =a 23 = −20/6;a 23 =a 23 ;a 23 =r = −20/6; из (***)

В данном случае на диагонали оказался максимальный элемент, поэтому перестановка 2-ой и 3-ей строк не выполняется.

Выход из цикла IIIи вход в циклIвБлок 11

r =b 2 ;b 2 = b 2 ;b 2 =r= −20/6.

Свободный член b 2 остается на своем месте.

Вход в цикл IV

m =k +1 = 2+1 = 3;

c = a mk / a kk = a 32 / a 22 = (–4/6) / (16/6); из (***)

b 3 =b 3 –c b 2 = −22/6 – (–1/4)(–20/6) = −27/6 из (***)

Выход из цикла IVи вход в циклV

i = 2 (i от 2 до 3); a 32 = a 32 – с a 22 = −4/6 – (–1/4)  16/6 = 0;

i = 3;a 33 =a 33 –с a 23 = −22/6 – (–1/4)(–20/6) = −27/6.

Выход из цикла Vи выход из циклаI.

Обратный ход метода Гаусса

В Блоках 1924 реализуются формулы (7).

В Блоке 19 из последнего уравнения находится значениеx n (n = 3)

x 3 =b n / a nn =b 3 / a 33 = (–27/6) / (–27/6) = 1.

Вход в цикл VI(Блок 20), в котором значение переменной циклаk изменяется отn –1 до 1 с шагом (–1)

Блок 21s= 0

Вход в цикл VII(Блок 22)

i = k +1 = 2+1 = 3; n = 3; s = s + a ki x i = 0 + a 23 x 3 = −20/6 1 = −20/6.

Выход из цикла VIIнаБлок 24 в циклVI:

k = 2; x 2 = (b k – s)/ a nn = (b 2 – s)/ a 22 = (–20/6 +20/6)/ a 22 = 0.

k =k –1 = 2–1 = 1;

i = k + 1 = 2; s = 0 + a 12 x 2 = 5  0 = 0;

i = k + 1 = 3; s = 0 + a 13 x 3 = 8  1 = 8;

x 1 = (b 1 –s)/ a 11 = (14 – 8) / 6 = 1.

Выход из последнего цикла VII.

В Блоке 25 (цикл опущен) выполняется вывод на экран полученного решения СЛАУ – векторат.е.x i ,i =1, ...,n . В нашем случае (1; 0; 1).